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We present a design and implementation of the automated “Extract Method” refactoring for Rust programs.
Even though Extract Method is one of the most well-studied andwidely used in practice automated refactorings,
featured in all major IDEs for all popular programming languages, implementing it soundly for Rust is
surprisingly non-trivial due to the restrictions of the Rust’s ownership and lifetime-based type system.

In this work, we provide a systematic decomposition of the Extract Method refactoring for Rust programs
into a series of program transformations, each concerned with satisfying a particular aspect of Rust type
safety, eventually producing a well-typed Rust program. Our key discovery is the formulation of Extract
Method as a composition of naïve function hoisting and a series of automated program repair procedures that
progressively make the resulting program “more well-typed” by relying on the corresponding repair oracles.
Those oracles include a novel static intra-procedural ownership analysis that infers correct sharing annotations
for the extracted function’s parameters, and the lifetime checker of rustc, Rust’s reference compiler.

We implemented our approach in a tool called REM—an automated Extract Method refactoring built on
top of IntelliJ IDEA plugin for Rust. Our extensive evaluation on a corpus of changes in five popular Rust
projects shows that REM (a) can extract a larger class of feature-rich code fragments into semantically correct
functions than other existing refactoring tools, (b) can reproduce method extractions performed manually by
human developers in the past, and (c) is efficient enough to be used in interactive development.
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1 INTRODUCTION

Code refactoring—a set of techniques for restructuring programs without changing their mean-
ing (Fowler and Beck 1999; Opdyke 1991)—is a well-studied research topic in software engineering
with a long history (Mens and Tourwé 2004; Roberts et al. 1997; Schäfer 2010). As of early 2023,
implementations of automated code refactorings form a large part of the functionality of mod-
ern integrated development environments (IDEs), such as Visual Studio Code (Microsoft 2023),
Eclipse (Fuhrer et al. 2004), and the family of tools based on JetBrains’ IntelliJ IDEA (Jemerov 2008).
Common refactorings are well-understood (Schäfer and de Moor 2010), and re-implementing them
for new popular languages poses little challenge for IDE developers. This is not the case for Rust.
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1 const W: [i32; 1] = [5];

2 pub fn foo() {

3 let x: [i32; 1] = [1];

4 let xref = &x;

5 let mut z : &[i32];

6 {

7 let y: [i32; 1] = [2];

8 z = &y;

9 z = if z[0] < xref[0] {

10 &y

11 } else {

12 &W

13 };

14 println!("{:?}", z);

15 }

16 }

(a) A program before the refactoring

1 const W: [i32; 1] = [5];

2 pub fn foo() {

3 let x: [i32; 1] = [1];

4 let xref = &x;

5 let mut z : &[i32];

6 {

7 let y: [i32; 1] = [2];

8 z = &y;

9 z = bar(z, xref, y);

10 println!("{:?}", z);

11 }

12 }

13 fn bar(z: &[i32], xref: &[i32], y: [i32; 1])

14 -> &[i32; 1] {

15 if z[0] < xref[0] { &y } else { &W }

16 }

(b) Result by VSCode Rust Analyzer (doesn’t compile)

Fig. 1. Example of a non-trivial Extract Method refactoring instance for a Rust program.

Rust (Rust Team 2017) is a relatively new systems programming language designed for writing
low-level code that enjoys high-level correctness guarantees, such as type- and thread-safety, as
well as runtime performance of traditional “unsafe” systems languages, such as C/C++. A distinct
feature of Rust is its ownership-based type system that supports automated reasoning about most
common patterns of low-level manipulation with pointers and references, and makes it possible to
prove, at compile time, the absence of memory leaks or data races, while also eliminating the need
for manual memory management in a runtime that does not rely on a garbage collector. Despite its
advantages for safety and performance (Ayooluwa et al. 2020; Qin et al. 2020), the type system of
Rust poses unique challenges to the development of language tooling support. In particular, in the
case of Rust, implementations of automated refactorings need to take the intricacies of its type
system into account in order to produce code that is type-correct.
Consider the popular automated code refactorings “Extract Method”, which is used to hoist a

lexically well-scoped piece of code into a separate function with suitable parameters and result
type (Murphy-Hill and Black 2008). Fig. 1a shows a Rust program with a global array constant W and
a function foo that manipulates several references, xref and z, to 32-bit integer arrays owned by local
variables x and y, respectively. Let us assume the user’s intention here is to extract the conditional
if-else expression at the lines 9–13 to a separate function bar by invoking the refactoring.

pub fn foo() {

...// same definitions as before

{

let y: [i32; 1] = [2];

z = &y;

z = bar(z, xref, &y);

println!("{:?}", z);

}

}

fn bar<'a> (z: &[i32], xref: &[i32],

y: &'a [i32; 1]) -> &'a [i32; 1] {

if z[0] < xref[0] { y } else { &W }

}

Fig. 2. Correctly extracted method bar

Fig. 1b demonstrates the result of invoking such a
refactoring from a popular Visual Studio Code plugin
Rust Analyzer. Unfortunately, this code is rejected by
the compiler for a number of reasons. The first one has
to do with the way the extracted function handles its
parameter y: its type [i32; 1] indicates that bar takes
the ownership of y from its caller. Amongst other things,
an owner can drop, (i.e., deallocate) its content, thus
making any future reference to it (e.g., the one the caller
makes at the println! statement) invalid—clearly not
an outcome we desire. At the same time, the result
type &[i32; 1] suggests that a shared reference will be
returned—and it has to be this way since the function
can also return the reference &W to the global constant W that is not owned by the function bar.
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Even changing the parameter type for y to a reference type &[i32; 1] and passing the reference &y
at the call site of bar in foo does not fix the code completely. The new issue is: the function’s return
type is a reference to some value, and all values in Rust have statically determined owners that define
the scope, in which references to those values remain valid (i.e., not dangling). To further correct
this issue as per Rust’s type system, that is to determine the scopes of the references manipulated
by its caller that the result depends upon, the ascribed types must capture the intended scope of
the reference returned as the result of bar. The main mechanism to syntactically track scopes of
references in Rust is lifetimes. A valid version of bar shown in Fig. 2 exercises this mechanism by
explicitly annotating the types of one of its parameters and result with a lifetime parameter, 'a,
stating that the scope of its resulting reference will be as large the one of the parameter y. This
way, the contents of the caller’s variable y will not be dropped as long as z is being used; the same
holds trivially for the global constant W.
The outlined example provides the motivation for this work, demonstrating that, unlike code

transformations for Java, Go, and Python, refactorings for Rust programs need to be aware of the
semantics of ownership, sharing, and lifetimes, to produce code that compiles.

Our Approach and Key Ideas. The goal of this work is to design a robust and efficient Extract
Method algorithm for Rust programs overcoming the challenges posed by its type system:

C1 Extracting a fragment of code requires granting ownership or ascribing suitable sharing type
constructors to its free variables that are abstracted as the extracted function’s parameters.

C2 Variables turned function parameters might also need to be annotated with lifetimes that
soundly indicate how far the scope of their returned reference(s) should last beyond the call to
the extracted function.

The reader could notice that both of these challenges have to do with inferring correct type
information rather than with generating the “actual” code of the function. This is almost the case
(we will elaborate on some intricacies below), and we exploit this observation by phrasing our
refactoring as a series of program repairs (Le Goues et al. 2021) that elaborate code obtained by
performing a “naïve” (and often incorrect) method extraction first.
Given a “functionally-correct” (but not type-correct) solution to an Extract Method task, we

start by addressing Challenge C1. One can think that a solution to this task can be obtained by
simply piggy-backing on the type checking algorithm of rustc, the standard Rust compiler. While
having access to the type information definitely helps to estimate the level of ownership that can
be ascribed to a parameter (e.g., owned, shared, etc), it does not always provide the most suitable
bound. For example, notice that the contents of y in Fig. 1a is fully owned in the scope of the body
of foo, but are only read (and not mutated) by the fragment being extracted, and hence y can be
turned into an immutable borrow (i.e., shared reference)1 when it becomes a parameter of bar.

This hints at the idea of a tailored analysis for inferring the most precise ownership annotations
for the parameters based on their usage within the fragment being extracted. To solve Challenge C1,
we define an ordered abstract domain for ownership annotations and implement an intra-procedural
analysis for their inference. We use the results of the analysis to ascribe correct annotations to the
introduced parameters and to adapt arguments of the call.

Unlike ownership annotations that introduce obligations on what is required before an argument
can be passed into a call to the extracted code, depending on their use within the extracted code,
correct lifetimes obligations may introduce obligations on how long references should stay alive
for after the call to the extracted method. While it is not unreasonable to expect that inferring
correct lifetimes for the extracted method’s parameters might be achieved by developing another

1In Rust terminology, borrow and reference are often considered synonymous and we will be using them interchangeably.
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intra-procedural analysis, in practice this task proved to be much more difficult, especially given
the need to align the results of such an analysis with the logic of rustc’s own lifetime analysis
which does not have a formal specification at the time of this writing.

Our solution for Challenge C2 follows the refactoring-as-program-repair line of thinking. For this,
we use the compiler’s feedback (i.e., the error messages regarding the lifetime constraints) as a repair
oracle to “fix” the code by introducing suitable lifetime parameters and corresponding annotations.
There is an obvious technical performance issue with this approach: invoking a compiler on a
sizeable project even once, just to fix method annotations, might render the refactoring prohibitively
slow—even more so in the presence of complex dependencies maintained by a build tool, such as
Rust’s cargo. To avoid this potential performance issue, we solely rely on the cargo check utility
as a repair oracle since it compiles the code without the expensive operation of generating code.
It works remarkably well in practice, allowing us to perform Extract Method in large real-world
projects in a matter of one-two seconds on a commodity laptop.

While we identify Challenges C1 and C2 as genuinely novel aspects of designing Extract Method
algorithm for Rust, our implementation had to address several other technical obstacles, such as,
e.g., extracting code with non-local control flow (i.e., break and return statements), and adapting
the arguments at the call site of the extracted method. For the sake of making our exposition
self-contained, in this paper we also present our solutions to those obstacles.

Contributions and Outline. To summarise, in this work, we make the following contributions:

• We identify and systematically characterise key challenges of implementing the automated
Extract Method refactoring for Rust, explaining them from the perspective of Rust’s type system.
• We describe the design of an Extract Method refactoring that is guaranteed to produce well-typed
Rust code. Our key insight is to consider the refactoring as a composition of naïve extraction, as
could be done in a Java-like language, with a series of subsequent program repair procedures
that rely on static analyses and compiler errors. As one of such oracles, we formulate a novel
constraint-based analysis for inferring the most specific yet sufficient ownership annotations.
• We implemented our approach on top of the Rust plugin for IntelliJ IDEA, a popular IDE.
• We evaluated our implementation, assessing its practicality and efficiency, by performing fourty
method extractions in several popular large open-source projects. Our experiments included
a number of scenarios designed by us, as well as scenarios reproducing changes in the code
made manually by Rust developers in the past. Our experiments demonstrate that our approach
subsumes the existing state-of-the-art implementations of Extract Method for Rust, and is fast
enough to be used in the course of the IDE-assisted development.

In Sec. 2, we provide a more detailed intuition about the hindrances posed to Extract Method by
Rust’s ownership and lifetimes disciplines, as well as by non-local control-flow operators. Sec. 3
outlines the main components and algorithms of the Extract Method pipeline. In Sec. 4, we report
on our experience of evaluating it on real-world projects. We compare our approach to related
efforts in Sec. 5, discuss its possible extensions in Sec. 6, and conclude in Sec. 7.

2 OVERVIEW

We start by taking a walk through a series of examples each aimed to showcase a specific challenge
posed to the implementation of Extract Method by Rust’s type system and its other features.

2.1 Ownership and Mutability

Among the most unique aspects of Rust are its strict ownership and borrowing disciplines statically
enforced by the compiler. Each value in Rust has a unique owner and zero or more references
that borrow from this unique owner permissions to access the said value with one crucial safety
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1 let y = String::new(); // y owns the new string

2 let mut x = y; // move occurs here

3 // an attempt to use y here would lead to a compilation error

4 x.push('a'); // mutable borrow occurs here

5 let r = &x; // immutable borrow occurs here

6 println!("x: {}", x); // immutable borrow occurs here

7 println!("r: {}", r); // immutable borrow occurs here

Fig. 3. Ownership, moving, and borrowing (mutable and shared).

proviso: in any state, a value either (a) can be mutated by being accessed exclusively through a
single reference or (b) it can be immutably shared by multiple references, but not both at the same
time. Moreover, the owner of a value can transfer the value’s ownership to a new owner—a process
known as a move. To understand these ideas better, let us look at the code fragment in Fig. 3.

Variable y in the code is the owner of a newly allocated value of type String. After the move at
line 2, x becomes the new owner, invalidating any access permission to this value via y from
this point onwards. Next, r borrows from x an immutable access to the String value, i.e., r
is a borrower or an immutable reference to the value owned by x and x is a lender in rela-
tionship with r. A couple of salient points are worth noting: first, the signature of the push

function is pub fn push(&mut self, ch: char), hence the actual call at line 4 is desugared to
String::push(&mut x, 'a')—in other words, push only borrows x via a mutable reference; second,
println is a macro which, similar to push, only borrows x, but it does so with immutable permissions.
Now, consider a refactoring that extracts line 4 from the code in Fig. 3 into a separate func-

tion bar. Naïve Extract Method implementations would extract the call to push into a method
that expects an argument of type String, since that is the type of the variable x, thus producing

// ...

let mut x = y;

bar(x); // move occurs here

let r = &x; // fails compilation

// ...

fn bar(s: String) { s.push('a'); }

the code on the right.2 The Rust compiler rejects the resulting
code with a compilation error because the move resulted from
calling bar on x implies that x has lost its ownership permis-
sions over the value it previously owned, thus making the
immutable borrow in the subsequent line illegal. Notice, that
even though the produced definition of bar and the call to it
are not well-typed, they can be made so, provided we know how the extracted fragment uses x.
To achieve that, we could pre-emptively analyse the code fragment being extracted, collecting
constraints about the uses of x, and then translate those constraints into type and expression patches
(i.e., fixes to the type ascribed to x and updating accordingly the expressions affected by this type
fix), before finally applying them to the parameters and variables of the extracted function.
Following this idea, our approach performs an intra-procedural analysis on the original code,

collecting constraints that describe (8) how the extracted code uses x, e.g., whether it needs to
mutate the value it owns, and (88) whether x or any of its references are being used after this call.
In this example, the extracted function is going to mutate the value owned by x, hence it requires
mutable permissions. Furthermore, x is still required after executing the extracted code, that is,
x cannot lose its ownership over the value but can lend its access permissions. Following these
constraints, we repair the function signature and its invocation at the call site as follows:

fn bar(s: String) ⇝ fn bar(s: &mut String)

bar(x) ⇝ bar(&mut x)

2We used IntelliJ Rust plugin version 0.4.186.5143-223, released on 27 March 2023.
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1 let mut y = String::new();

2 let mut x = y; // 'a: scope of x STARTS here

3 x.push('a'); // 'b: mutable borrow STARTS and ENDS here

4 let r = &x; // 'c: lifetime of r STARTS here

5 println!("x: {}", x); // 'd: immutable borrow STARTS and ENDS here

6 println!("r: {}", r); // 'c: lifetime of r ENDS here

7 // 'a: scope of x ENDS here

Fig. 4. Rust code from Fig. 3 annotated with lifetimes.

What we have seen is the first example of our program-refactoring-as-program-repair methodology.
Specifically, we employed a static data flow analysis to enable a program transformations that fixed
type-incorrect signature of an extracted function and its invocation.

Continuing with our example, consider the extraction of line 6 from Fig. 3 into a separate function
as shown on the right. This refactoring—you’ve guessed it—would also be rejected by the compiler.3

//...

let r = &x;

baz(x); // move occurs here

println!("r: {}", r); // fails compilation

fn baz(s: String) { println!("x: {}", s); }

The reason for this is a bit more subtle and a full
explanation requires the understanding of Rust life-
times detailed in Sec. 2.2. For now it suffices to un-
derstand that once the owner of a value (in this case,
of s) goes out of scope, the memory it owns is auto-
matically freed, i.e., the value is dropped.
In this concrete example, the string value x would be dropped upon return from the call to baz,

because s, the new owner of the string value, goes out of scope without returning the value back to
the caller. The subsequent attempt of the caller to access it via the previously created immutable
reference r would lead to a use-after-free bug, hence a strong reason for Rust to reject such code.
Instead of moving the value into baz, we could borrow it with read-only access. Notice that this is
in fact the only possible solution which does not break the aforementioned invariant: at any one
point only one mutable reference can exist or multiple immutable ones, but not both. The only
solution accepted by the compiler is, thus, to use a shared reference:

fn bar(s: String) ⇝ fn bar(s: &String)

baz(x) ⇝ baz(&x)

Although simple, these examples highlight that it is not trivial to refactor Rust code and there is no
conservative solution (e.g., give as much or as little ownership as possible over parameters’ values)
that would generally work. Instead, a detailed analysis of the value accesses is needed to find a fix
that would be accepted by the borrow checker. We will present such an analysis in Sec. 3.2.

2.2 Lifetimes of References

In Fig. 3 we have seen a mutable reference being created on the invocation of push, and two
immutable ones created afterwards—all having access to the very same String value. This seems to
contradict the proviso we stated earlier on Rust’s alias discipline stating that a mutable reference
to a value cannot co-exist with any other reference to that same value. However, this invariant
actually holds true due to Rust’s treatment of references that are implicitly assigned lifetimes—
named regions of code that a reference must be valid for.4 Fig. 4 shows the same example as in
Fig. 3, but now with explicitly shown lifetimes that are ascribed by the compiler to each reference.

3This code was produced by VSCode Rust Analyzer, version 0.3.1451, available as the latest stable release as of April 2023.
4The lifetime of a reference (i.e., the span of time in which it can be used) should not be confused with the scope of the value

that the reference might refer to (i.e., the span of time before that value gets deallocated). In most of the cases, the latter is

much larger, as a value can outlive multiple references that refer to it (Matsakis 2017a).
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What makes it possible to safely allow for multiple aliases to the same value while avoiding
dangling references is careful tracking done on the basis of the following main rules, which we
synthesised from the Rust RFC Book (Matsakis 2017a):

L1 The lender needs to outlive all of its (alive) references: a reference lives from the place it started
borrowing until its last use.

L2 A mutable borrow can only be created if its lender has no other borrows living at that time.
L3 The lender cannot be used as long as one of its mutable borrowers still lives.
L4 The lender cannot be modified as long as one of its (shared) borrowers still lives.

As an example for L1, notice that in Fig. 4 variable x outlives r since the region 'a corresponding
to its scope contains the region 'c corresponding to the lifetime of r, generally denoted by 'a:'c.
Assigning lifetimes and checking whether they follow these rules is generally done automatically

1 let mut x: &i32 = &0;

2 let mut y: &i32 = &1;

3 let mut z;

4 y = {

5 z = *x + *y + 1;

6 &z };

7 println!("{}", *y);

Fig. 5. Extending lifetimes

by the compiler. However, there are situations where the compiler
would statically reject semantically correct programs unless lifetimes
and their constraints are explicitly provided. For instance, consider
the code snippet in Fig. 5. The aim of this example is to show that,
to avoid dangling references by also respecting rule L1, rustc is
implicitly extending the life span of the value owned by z from its
last use at line 6 to the end of y’s lifetime at line 7. Requesting a
refactoring of this code where lines 5–6 are extracted into a separate
function without providing any extra hints to the compiler, would get us into trouble, as Rust is
not capable of automatically extending lifetimes inter-procedurally, as shown in the code below:

1 let mut x: &i32 = &0;

2 let mut y: &i32 = &1;

3 let mut z;

4 y = bar(x, y, &mut z);

5 println!("{}", *y);

6 ...

10 fn bar(x: &i32, y: &i32, z: & mut i32) -> & i32 { // type error: missing lifetime specifiers

11 *z = *x + *y + 1; z

12 }

To help the compiler understand that this code is correct, the extracted function requires explicit
lifetime annotations, and even more, it requires the reference passed to parameter z to outlive the
returned reference. To infer such specifiers and constraints automatically during the refactoring, we
could either design an intra-procedural analysis to track how the borrowing occurs and then add
the lifetime specifiers based on the analysis’s results, or we could leverage the power of the rustc
compiler to guide us into correctly fixing the extracted function’s signature. In this work we choose
the latter for the following reasons. First, rustc is known for offering accurate recommendations
whenever it reports a static error. Second, while less theoretically exciting than building our own
lifetime analysis, explicit reliance on rustc for inferring lifetimes is more resilient to changes in the
de-facto lifetime logic that is implemented by the reference compiler.

We proceed to fix the result of the refactoring from the example above (i.e., the function bar) by
(1) annotating each parameter and return type with a unique lifetime, (2) using the compiler as
an oracle to collect lifetime constraints, and (3) elaborating the function’s signature and go back
to step (2) if the compiler still does not accept the refactored code. We call this method loosest
bounds first, because of our adopted lifetime annotations strategy, where each parameter’s lifetime
is distinct and unconstrained at first and is being subsequently constrained down incrementally
following the compiler’s feedback. Applying this approach to our example (extracting lines 5–6
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1 fn foo(x: i32) -> String {

2

3 let y =

4 if x > 2 {

5 x

6 } else {

7 return String::from("end")

8 };

9

10 y.to_string()

11 }

(a) Before extracting the lines 4–8

1 fn foo(x: i32) -> String {

2 let y = bar(x);

3 y.to_string()

4 }

5 fn bar(x: i32) -> i32 {

6 if x > 2 {

7 x

8 } else {

9 return String::from("end")

10 };

11 }

(b) Result by IntelliJ IDEA Rust plugin

Fig. 6. Extracting a code with non-local control flow operators into a separate function.

in Fig. 5) results in the code below, which is accepted by the compiler since the reference flowing
into the third argument is constrained to live at least as long as the output reference, i.e., where 'a:'b.
1 let mut x: &i32 = &0

2 let mut y: &i32 = &1;

3 let mut z;

4 y = bar(x, y, &mut z);

5 println!("{}", *y);

6 ...

10 fn bar<'a,'b>(x: &i32, y: &i32, z: &'a mut i32) -> &'b i32 where 'a:'b {

11 *z = *x + *y + 1; z

12 }

To simplify the signature of an extracted function, our approach additionally applies the lifetime
elision rules recommended by the Rust Reference. This is why the parameters x and y in the final
version of bar don’t have explicit lifetime annotations.

Our method works well even in the presence of indirect references as per the code below:
1 let p: &mut &i32 = &mut &0; // a reference to a reference to an integer

2 let x = 1; // a constant reference to an integer

3 *p = &x; // a value of p is now an immutable borrow

4 println!("{}", **p);

Although both p and x have the same lifetimes in the original code above, when extracting line 3
into a separate function, the compiler needs to know that the reference assigned to the parameter x
lives at least as long as the reference living in p:
1 let p: &mut &i32 = &mut &0;

2 let x = 1;

3 bar(p, &x);

4 println!("{}", **p);

5 ...

10 fn bar<'a, 'b>(p: &mut &'a i32, x: &'b i32) where 'b: 'a { *p = &x; }

2.3 Non-Local Control Flow

Finally, we are going to discsuss the aspect that is not specific to Rust’s type system yet makes code
extraction tricky in fairly common scenarios: those involving non-local control flow operators,
such as return, break, continue, and, specifically, their arbitrary combinations.

Rust is primarily an expression-oriented language (Matsakis 2017b), with statements mainly used
for sequential composition of computations. This allows the developers to write nested expressions,
while adding more challenges for automatic refactoring. Consider the code in Fig. 6a. A naïve
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1 fn foo(x: i32) -> String {

2 let y = match bar(x) {

3 Ok(value) => value,

4 Err(value) => return value,

5 };

6

7 y.to_string()

8 }

9 fn bar (x: i32) -> Result<i32, String> {

10 let result = if x > 2 {

11 x

12 } else {

13 return Err(String::from("end"))

14 };

15 Ok(result)

16 }

Fig. 7. Extracting code with a non-local control via VSCode Rust Analyzer.

1 fn foo(x: &mut i32) -> String {

2

3 loop {

4

5 if *x > 2 {

6 *x = *x - 1;

7 } else if *x == 1 {

8 *x = *x - 2;

9 return String::from("42");

10 } else {

11 break;

12 }

13

14 }

15

16 x.to_string()

17 }

(a) A program with both break and return

1 fn foo(x: &mut i32) -> String {

2 loop { match bar(x) {

3 Fig6::Ok(x) => x,

4 Fig6::Return(x) => return x,

5 Fig6::Break => break,

6 }

7 }

8 x.to_string()

9 }

10 fn bar(x: &mut i32) {

11 let result = if *x > 2 { *x = *x - 1; }

12 else if *x == 1 {

13 *x = *x - 2;

14 return Fig6::Return(String::from("42"));

15 } else { return Fig6::Break; };

16 Fig6::Ok(result)

17 }

(b) Extract Method result by our approach

Fig. 8. Extracting code with a combination of non-local control flow operators.

extraction of the if-else expression in the lines 4–8, as by IntelliJ Rust plugin, would fail to produce
code that even type-checks (cf. Fig. 6b). The extraction produces the function bar whose return
type indicates an i32 as return value, but the body returns a String instance in the else-branch.
Even if we were fixing the type, the code does not preserve the initial semantics, since, upon calling
bar it transfers the control back to the binding expression at line 3 of Fig. 6b upon executing the
return at line 8, instead of passing the control to the caller of foo like in the original program.
The solution to this issue is well-known amongst the IDE developers: simply “wrap” the result

of the extracted function into instances of a tagged data type, such as Rust’s enum, and use different
instances to indicate either “normal” termination of the function or a “special” case that needs to
be handled appropriately at the call site. This solution is adopted by VSCode Rust Analyzer, which
for the code in Fig. 6a produces in Fig. 7, using the library enum type Result.

Such solutions5 turn out to be rather ad-hoc: it is capable of handling the non-local control-flow
scenarios with return statements by using Result type as shown above, and with break or continue
by using the ControlFlow data type from the standard library. However, it refuses to extract a
function from the if-else statement between the lines 5–12 of the code shown in Fig. 8a.
Our approach proposes a more general solution to this problem by identifying the non-local

control flow operators used in the fragment to be extracted and by constructing a corresponding
enum data type whose constructors are used as indicators for the corresponding call-site logic,
while carrying the respective results of the extracted function’s call. For instance, for the program

5We tried an implementation of Rust Analyzer’s Extract Method as available in early April 2023.
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fn foo(a: &i32) 

{ 

}

program.rs

Rust file with a 

selected fragment

unmodified base IDE functionality

ordering and names of the parameters

Extract Method 

UI Form

Baseline method  

extrac?on logic

fn foo(a: &i32) 

{                 }

fn bar(x: i32, 

            y: i32)

bar(..) Non-Local 

Control Flow 

Repair (§3.1)

Ownership 

Analysis 

(§3.2)

Life?me Annota?on Repair (§3.3)

enum Control 

fn bar(x: i32, 

            y: i32)

fn foo(a: &i32) 

{                           }match bar(..)

success: final result

check fails, 
suggesting 
lifetimes

repair  

signature

 x: 'a 

 y: 'b 

'b: 'a
send  

for checking

enum Control 

fn bar(x: &i32, 

            y: &i32)

fn foo(a: &i32) 

{                           }match bar(..)

cargo check is out of suggestions

refactoring fails

Constraints 

SAT?

&x + &y

fn bar<'a, 'b> 

(x: &'a i32, 

 y: &'b i32)   

where 'b: 'a

fn foo(a: &i32) 

{                           }match bar(..)

enum Control

cargo check
lifetimes repaired

Fig. 9. High-level design of REM. Light-blue boxes are the stages of the refactoring contributed by this work.

Grey boxes are the so�ware components reused by us as-is. Some common graceful failure modes (e.g., due

to inability of the underlying IDE to perform baseline extraction) are elided to avoid clu�er.

enum Fig6<A, B> {

Ok(A),

Return(B),

Break, }

in Fig. 8a our approach generates the auxiliary data type Fig6 shown on the
right. This type is then used to represent the possible outcomes regarding
the non-local control-flow resulting from a call to the extracted function bar

and use them for branching within the caller, as shown in Fig. 8b.
Arguably, we could have solved this problem without introducing new data-types such as Fig6

at all, but rather by constructing a suitable composition of existing library data types, such as
ControlFlow<B, C>. We believe, our current solution offers a better readability, and note that the
two approaches are easily interchangeable for each particular combination of control-flow operators
via a simple conversion between two isomorphic data types.

2.4 Pu�ing It All Together

Our approach to Extract Method for Rust combines the outlined solutions to the challenges posed
by the language aspects described in Sec. 2.1–Sec. 2.3. Each solution corresponds to a specific
refactoring pass that tackles a particular aspect in a program repair-inspired fashion. Going back
to our initial example from Fig. 1a: the correctly extracted function from Fig. 2 is obtained by first
determining that the ownership type of y should be an immutable borrow via our novel ownership
analysis and, second, by deriving the correct lifetime annotations by running several plausible
lifetime annotation schemas against rustc and adapting the result accordingly.
In the subsequent sections, we will formally introduce the components of our refactoring and

demonstrate its utility and efficiency by using it on large open-source Rust projects.

3 THE EXTRACT METHOD ALGORITHM

Fig. 9 presents the high-level of design of our refactoring tool dubbed Rusty Extraction Maestro

(REM). REM extends the basic functionality of an IDE, such as IntelliJ IDEA with Rust plugin,
by applying three algorithms for generating patches that fix each of the previously outlined
shortcomings of the existing baseline Extract Method implementations: handling the non-local
control flow of the extracted code (Sec. 3.1), passing arguments to the extracted method such that
the refactored code respects Rust’s ownership and mutability disciplines (Sec. 3.2), and fixing the
signature of the extracted function to specify the lifetime constraints of related references (Sec. 3.3).
In several scenarios, the REM fails to perform the refactoring, in which case it fails gracefully by
reverting the changes to the original state. We discuss those failure modes in Sec. 3.4.
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Algorithm 1: FixNonLocalControl

Input :an extracted function EF , an introduced function call expression � (i.e., EF (. . .)) in the caller

Output :a list of patches PS to apply to the refactored file

1 PS← []

2 R← collect return statements in EF

3 B,C← collect top-level break and continue statements in EF

4 if ' ∪ � ∪� ≠ ∅ then

5 RTY ← BuildReturnType(', �,� )

6 PS← UpdateReturnType(EF, RTY ) :: PS

7 for ;A ∈ ' do PS ← (;A , return 4 ⇝ return Ret(4)) :: PS

8 for ;1 ∈ � do PS ← (;1 , break⇝ return Break) :: PS

9 for ;2 ∈ � do PS ← (;2 , continue⇝ return Continue) :: PS

10 ;� ← find location of the final expression of EF

11 PS← (;� ,� ⇝ Ok(�)) :: PS

12 CS← BuildCasesForReturnType(RTY )

13 ;caller ← location of �

14 PS← (;caller, � ⇝ match � with CS) :: PS

15 return PS

3.1 Handling Non-Local Control Flow

If an expression being extracted contains return, break, or continue statements, then the code of
the callee and caller may need additional changes to preserve the semantics of the original code.
For the callee, problems arise as the behaviours of control-flow operations were defined in the
context of the caller, and do not make sense within the newly extracted function. For the caller, as
the callee can not affect the control flow outside of its own definition, modifications will be needed
to recover the original control-flow from the results of the callee. Both of these problems relate to
propagating the effects of the non-local control flow between function calls, which, as it turns out,
can be solved in an idiomatic way by reifying control flow operators.
Suppose we have an extracted function that makes use of non-local control flow and so now

behaves incorrectly; in this case, we can reify its non-local operations to restore the original
semantics. In particular, we can augment the extracted function with a wrapper type that reifies
the control flow of its body in each of its constructors, capturing whether the function terminated
normally (e.g., Ok(_)) or performed some non-local control flow operation (e.g., Ret(_), Break,
Continue). With this transformation, it is possible to restore the original behaviour of the program
by modifying the extracted function’s call site to pattern-match on the wrapper result and perform
the corresponding jump-like operation.While such transformation introduces an additional runtime
cost with the wrapper type, those overheads most likely can be removed by an inlining compiler.
Algorithm 1 presents the formal description of our repair technique, which is based on the

high-level intuition just described. The algorithm starts by collecting any non-local control flow
operations in the extracted code (line 2–3) and tests the number of such operations (line 4). If
the extracted expression does make use of such operations, then further changes will be needed
to restore the original semantics of the program, and our algorithm initiates its repair process.
The algorithm begins by using BuildReturnType to construct a new data-type to represent the
control-flow operations that the extracted code makes (line 5), including a new constructor for each
such operation and a distinguished constructor Ok(_) for the normal control flow. The algorithm
then emits a patch to update the result type of the function via UpdateReturnType (line 6). The
patches emitted at the lines 7–9 update the body of the extracted function, replacing any use of
non-local control flow operators with returning corresponding constructors, including any values
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(Mutability) < := mut | imm

(Ownership) > := own | ref

(Permission) ? := ⟨<,> ⟩

(Less − than) ?1 <: ?2 (see Fig. 10b)

(a) Mutability and ownership capabilities

imm


ref

imm


own

mut


ref

mut


own

(b) Permissions la�ice

&T

T &mut T

mut T

(c) Permission subtyping

Fig. 10. A combination of mutability and ownership permission maps to a Rust type constructor

to be passed to the caller. To complete the update to the extracted function code, the algorithm
wraps the final expression of the extracted body into the Ok(_) constructor, to capture the normal
control flow (lines 10–11). Finally, the algorithm updates the caller (lines 12–14), replacing the call
site of the extracted function with a match statement that scrutinises the returned wrapped value
and enacts the corresponding effect in the context of the original function.

3.2 Inferring Ownership Annotations

As demonstrated with the examples in Sec. 2.1, producing a well-typed function as the result
of Extract Method boils down to phrasing the constraints imposed by Rust’s type system in
terms of the output of the refactoring. At the high-level, the well-typedness of the produced code,
when adapted to our cause, is a consequence of satisfying the following three requirements: (8) the
extracted function must have sufficient permissions to type-check, (88) the caller must have sufficient
permissions for the references it is passing to the call to the extracted method, and lastly, (888) the
caller must also have sufficient permissions left for its operations after the call to the extracted
method has taken some of its permissions. To infer the fixes that results in the code satisfying these
three requirements, firstly, we need to understand what exactly these permissions are, and secondly,
we also need to have a clear definition of what is the meaning of sufficient.

3.2.1 Constraints. We define permissions as a pair of capabilities, denoted ⟨<,>⟩: the mutability
capability< (a variable is either mutable, mut, or immutable, imm) and the ownership capability >
(a variable is either an owner, own, or a reference, ref). Fig. 10a shows the space of the capabilities.
To understand what it means for permissions to be sufficient, let us revisit an example from Sec. 2.1:

1 bar(&x);

2 println!("x: {}", x);

3 // end of the enclosing function for the statements above

4 fn bar(s: &String) { println!("x: {}", s); }

Adapted for this code snippet, the above listed requirements (8)–(888) can be stated as follows:

(8) Assume the parameter s has permission ⟨<,>⟩. Since bar performs no mutation via s, it is
sufficient for s to be immutable, a constraint denoted as imm <: s.< (or, shortly, imm <: s).
Furthermore, since no move occurs within this code (i.e., no values are stored), it is sufficient
for s to be a reference, denoted as ref <: s.> . Therefore, to satisfy type-checking, it is sufficient
for s to have the ⟨imm, ref⟩ permission, denoted ⟨imm, ref⟩ <: ⟨s.<, s.>⟩ (or ⟨imm, ref⟩ <: s).

(88) For bar to be called with permission ⟨imm, ref⟩ on the borrow x, it is sufficient for the caller
to have it at least with permission ⟨imm, ref⟩. In other words, if the caller would have any
of the ⟨mut, ref⟩, ⟨mut, own⟩, or even ⟨imm, own⟩ permission, it would still type-check, since
all these permission would allow the caller to lend bar an immutable access to x. We observe
that ascribing the least permissive permissions to a callee’s parameters makes its caller less
restricted with regards to the permissions it needs to have to support the call.
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Algorithm 2: FixOwnershipAndBorrowing

Input : the extracted function EF , the expression � of the call to EF , original function F

Output :a set of patches PS

1 Aliases← alias analysis on F /* maps variables to their aliases */

2 Mut← CollectMutabilityConstraints(EF, Aliases)

3 Own← CollectOwnershipConstraints(EF, Aliases, F )

4 PS← []

5 for param ∈ EF.params do /* derive patches for the signature of EF */

6 E, g, ; ← param.var, param.type, param.loc

7 if UNSAT(Mut ∪ Own, E) then raise RefactorError

8 if LUB(Mut ∪ Own, E) = ⟨mut, ref⟩ then PS← (l, E : g ⇝ E : &mut g ) :: PS

9 if LUB(Mut ∪ Own, E) = ⟨imm, ref⟩ then PS← (l, E : g ⇝ E : & g ) :: PS

10 for param ∈ EF.params do /* derive the patches for the body of EF */

11 if LUB(Mut ∪ Own, param.var) = ⟨_, ref⟩ then

12 Exps← collect from EF.body all the occurrences of param.var

13 for e ∈ Exps do PS← (e.loc, e ⇝ (* e) ) :: PS

14 for arg ∈ E.args do /* derive patches for the call to EF */

15 E, 4, ; ← arg.var, arg.exp, arg.loc

16 if LUB(Mut ∪ Own, E) = ⟨mut, ref⟩ then PS← (l, e ⇝ &mut e) :: PS

17 if LUB(Mut ∪ Own, E) = ⟨imm, ref⟩ then PS← (l, e ⇝ &e) :: PS

(888) To type-check the usage of x right after the call to bar, it is sufficient for x at line 2 to have
at least the permission ⟨imm, ref⟩. Since bar only borrows immutable access to x via &x (but
doesn’t own it), the borrow x at line 2 still has the same permission it had before the call to bar.

We define a less-than relation <: on all possible permissions as a partial order between capabilities
in the style of (Boyland et al. 2001), as depicted in the lattice in Fig. 10b. The lattice represents a set
of rules defining the subsumption of capabilities. The bottom of the lattice, ⟨imm, ref⟩, is the least
permissive permission corresponding to an immutable borrow. The top of the lattice, ⟨mut, own⟩

is the most permissive combination of capabilities, corresponding to a mutable variable with full
ownership permissions. In other words, a caller with a permission ⟨mut, own⟩ on a reference,
should be able to offer the extracted method any permission to use it, while a caller with permission
⟨imm, ref⟩ can only lend an immutable borrow. Each permission in Fig. 10b corresponds to a Rust
type constructor as depicted in Fig. 10c.

Given a set of capability constraints C, we next define a sufficient permission for a variable E , as
the least upper bound in the lattice that satisfies all the constraints on E :

LUB(C, E) ≜ LUB({⟨<,>⟩ | ⟨<,>⟩ <: E ∈ C})

Contradictions in the set of constraints C in relation to a variable E are detected as follows:

UNSAT(C, E) ≜ ∃ {E <: ⟨<1, >1⟩, ⟨<2, >2⟩ <: E} ⊆ C . ⟨<1, >1⟩ <: ⟨<2, >2⟩ ∧ ⟨<1, >1⟩ ≠ ⟨<2, >2⟩

The latter case corresponds to one of the failure modes of REM, which we discuss in Sec. 3.4.

3.2.2 Constraints-Based Patch Generation. Postponing the description of the constraint generation
until Sec. 3.2.3, we present Algorithm 2 that shows how, once collected, these constraints guide
the inference of program patches to fix the refactored code. The algorithm expects as input the
extracted function EF , an expression E representing the call to EF , and the original caller F in the
form preceding the refactoring. It returns a set of patches aimed at fixing the refactored code of
both the caller and the callee to respect the ownership and borrowing disciplines.
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Algorithm 3: CollectMutabilityConstraints

Input :extracted function EF , an alias map Aliases

Output :a set Mut of mutability constraints

1 MV ← collect all the variables in EF that are part of an lvalue expression

2 MV ← add to MV all the variables in the body of EF that are function call arguments with mutable requirements

3 MV ← add to MV all the variables in EF that are mutably borrowed

4 Mut← {imm <: p.var | ? ∈ EF.params ∧ ∀E′ ∈ Aliases(p.var) : E′ ∉ MV} ∪

5 {mut <: p.var | ? ∈ EF.params ∧ ∃E′ ∈ Aliases(p.var) : E′ ∈ MV}

Algorithm 4: CollectOwnershipConstraints

Input :extracted function EF , an alias map Aliases, original caller function F

Output :a set Ownership of ownership constraints

1 FV ← free variables in F in the code snippet after the call to EF

2 PBV ← collect all vars in EF.params declared as pass-by-value

3 Borrows ← PBV ∩ {p.var | ? ∈ EF.params ∧ ∃E′ ∈ Aliases(p.var) : E′ ∈ FV}

4 Own← collect all the vars in EF which are moved into or out of

5 Ownership← {E <: ref | E ∈ Borrows} ∪ {own <: E | E ∈ Own}

The algorithm starts by inspecting the body of the extracted function EF for the purpose of
collecting mutability and ownership constraints. Given the set of constraints, deriving the patches
for the signature of the extracted function (lines 5–9) follows the one-to-one correspondence of
capability combination and Rust type constructor shown in Fig. 10. If the constraints contain
contradictions (line 7), an error is raised indicating failure of the refactoring (cf. Sec. 3.4). For the
parameters whose types are constrained to be references (lines 10–13), the algorithm produces
patches to fix their accesses in EF to be dereferences. Finally, where applicable, the arguments at
the call site of the extracted function are updated to be borrows instead of moves (lines 14–17).

3.2.3 Constraints Collection. Algorithm 3 describes the collection of the mutability constraints.
For each variable in the extracted function EF it checks whether (a) it takes part in a store operation
(line 1) or, by inspecting the type signatures, whether (b) it is an argument in a function call that
requires mutability capabilities (line 2), or, whether (c) it is used to create a mutable borrow (line 3).
A parameter is constrained to be at least mutable if it falls into any of the cases (a)–(c), otherwise it
is constrained to be at least immutable (lines 4–5).
Algorithm 4 is in charge of collecting the ownership and borrowing capabilities. Aiming to

infer the least permissive ownership capabilities for the extracted method makes it very simple: it
constrains all the parameters of the extracted function to be references (line 5, E <: ref). There is
only one exception: if a parameter originates from a variable in the refactored code that is never
used (directly or indirectly via aliases) after the call to the extracted function, then we do not
constrain this variable to be a reference, hence the set intersection at line 3. The rationale behind
this exception is that a borrow implies keeping the memory it refers to occupied throughout the
call, instead of freeing it during the call itself, when it’s safe. In other words instead of retiring a
borrow to a lended value that is not going to be used, the callee might as well just drop that value.
Ownership constraints, own <: E , are collected for variables involved in a move operation (line 4).
These two algorithms also account for how the collected constraints are propagated through

the borrows. This propagation is achieved by making the alias information extracted from the
original code available to the algorithms. We implemented an Andersen-style intraprocedural
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Algorithm 5: FixLifetimes

Input :a cargo manifest file CARGO_MANIFEST for the whole project, extracted function EF

Output :patched extracted function EF ′

1 EF ′ ← clone EF

2 EF ′ ← update EF ′ by annotating each borrow in EF ′ .params and EF ′ .ret with a fresh lifetime where none exists

3 EF ′ ← update EF ′ by adding the freshly introduced lifetimes to the list of lifetime parameters in EF ′ .sig

4 Loop

5 err← (cargo check CARGO_MANIFEST).errors

6 if err = ∅ then break /* refactoring is completed */

7 suggestions← collect lifetime bounds suggestions from err

8 if suggestions = ∅ then raise RefactorError /* refactoring failed */

9 EF ′ ← apply suggestions to EF ′

// readability optimisations:

10 EF ′ ← collapse the cycles in the where clause of EF ′ .sig

11 EF ′ ← apply elision rules

1 let mut x = String::from("Hi");

2 let a: &mut String = &mut x;

3 let b = a;

4 println!("b: {}", b);

5 ...

6

fn foo(a: &String){

let b = a;

println!("b: {}", b);

}

context-insensitive data-flow analysis (Andersen 1994) that
captures may-aliases as constraints and solves them using
SWI-Prolog. The example on the right demonstrates one of
its applications. Assume we want to extract lines 3-4 (ignor-
ing the foo function for now). In a first step, we collect a
constraint stating it is sufficient for b to be immutable, i.e.,
imm <: b. Knowing that a and b are aliased, this information
is then propagated to a, i.e., imm <: a. This way, although
a is declared as a mutable borrow in the original program,
it is sufficient to be declared as immutable borrow in the
refactored code when used as a parameter of the extracted function foo.

3.3 Lifetime Annotation Repair

It is common for Rust programs to create new references within a scope of a function body, thus,
exercising the mechanism of re-borrowing: borrowing a reference to a value that has already been
borrowed. Re-borrowing takes place implicitly when passing a borrowed value to a function that
requires a reference, but the original borrow would still need to be scoped after the call to the
function. In this case, re-borrowing creates a new reference that has a shorter lifetime than the
original borrow. In case a function returns a borrow, the relation between that result’s lifetime
and those of the parameters must explicitly be captured in that function’s signature by means of
a lender-borrower lifetime relation as demonstrated, e.g., in Fig. 2. To this purpose, all returned
references must bear explicit lifetime annotations, as do some of the input parameters.

Ascribing correct relations to the lifetimes of parameter and return references is the last stage of
our refactoring pipeline (cf. Fig. 9). Determining such relations can be achieved, by e.g., developing a
custom data-flow analysis. However, since this type repair procedure is already applied to a “nearly
type-correct” function definition, we observed that the simplest and the most robust technical
solution by far is to use rustc as an oracle for deriving correct lifetime relations. Specifically, our
key insight is that if we start by assigning each reference a unique lifetime, we can next rely on the
Rust type checker to guide the repair of the extracted function signatures which require explicit
lifetime constraints. Below, we describe Algorithm 5 that does just that.
The algorithm first annotates each reference type in the signature of an extracted function

(including the result type, if necessary) with distinct lifetimes (lines 2–3). This annotation strategy
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enables what we call the loosest bounds first approach, i.e., each lifetime is different and there is no
relation between any two of them. The algorithm proceeds by constraining down these lifetimes to
accommodate the type checker’s feedback (lines 4–9). At this stage, any such feedback, e.g., consider
adding the following bound: 'a: 'b, is added to the where clause of the function signature:

fn bar<'a,'b>(v: &'a i32) -> &'b i32 where 'a: 'b

Given a finite number of reference parameters, this loop is guaranteed to terminate, since the
compiler will not be suggesting redundant lifetime constraints. This repair-and-check loop repeats
until either the refactoring successfully completes with no more compilation errors (line 6) or it
fails with no more suggestions of lifetime constraints by cargo check (line 8).

Collapsing circular lifetime constraints. In the case of successful refactoring, we identify and
simplify the lifetimes constraints (line 10) before applying the elision rules (Rust Reference 2023)
to remove the annotations for which the compiler requires no explicit lifetime parameters in a
function signature (line 11). The constraint simplification is made possible by observing that any
circular dependencies between lifetime parameters can be removed by replacing all the parameters
in a cycle by a single variable (i.e., by collapsing the corresponding cycle into just one lifetime). For
instance, consider the following signature featuring two lifetime constraints:

fn bar<'a,'b>(x: &'a i32, y: &'b i32) -> &'b i32 where 'a: 'b, 'b: 'a

This signature is the result of rustc’s lifetime checker having detected that reference x must live at
least as long as reference y and vice versa: both facts reflected in the where clause as 'a: 'b, 'b: 'a.
We detect such cycles in the constraints by constructing a directed graph of lifetime dependencies
and check it for cycles. We collapse these cycles by generating lifetime substitutions for every two
lifetimes within the cycle-induced equivalance class. The signature of bar can thus be simplified to:

fn bar<'a>(x: &'a i32, y: &'a i32) -> &'a i32

3.4 Correctness, Extensions, and Failure Modes

Correctness. It is important to ensure that a local refactoring, such as Extract Method, is correct is
the sense that it preserves the original behaviour of the program. We do not provide a fully formal
correctness proof of our implementation, as it would require us to develop a formal semantics of
safe Rust, a complete one currently does not exist,—an endeavour well beyond the scope of this
work.6 That said, we note that our implementation implicitly assumes type correctness (akin to
Java types) but not ownership correctness of the underlying refactoring machinery inherited from
the base IDE (we implemented REM on top of IntelliJ IDEA Rust plugin), modulo the shortcomings
that we explicitly fix in Sec. 3.1. By such correctness we mean that the result of Extract Method is
correct in a “dialect of Rust” that does not enforce the ownership/lifetime discipline via types, and
relies on a garbage collector instead.

struct A<'a> {x: &'a i32}

struct B<'a> {x: &'a i32,

y: A<'a> }

pub fn foo() {

let m = A {x: &0};

let n = B {x: m.x, m};

/* do stuff with n */ }

Fig. 11. Structs with lifetimes

Tackling full Rust. For clarity, our exposition so far has presented
the essentials of REM’s algorithm as it relates to the core features
of Rust, however, in practice, there were a number of additional
language features which could interact with the repair procedure
that also had to be handled in order to produce a tool suitable for
refactoring real code. Most such features were straightforward to
support, although one that posed slightly more challenge was in
properly handling functions making use of structs. In particular,

6Formal correctness proofs for refactorings are very rare, even for languages with fully formalised semantics.
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1 fn foo1() {

2 let a = String::new(); // extraction start

3 let b = &a[..]; // extraction end

4 println!("{}", b);

5 }

(a) Extending ownership scope beyond the callee

1 struct S { a: String, b: String }

2 fn foo2() {

3 let s = S {a: "a".to_string(), b: ...};

4 drop(s.a); // extract this line

5 drop(s.b);

6 }

(b) Moving out a struct’s field

Fig. 12. Two examples of scenarios in which REM fails to extract a method.

our implementation needed to take special considerations when extracting programs making use
of such constructs because the extracted function might borrow values that are structs which
themselves have fields that require lifetime annotations (cf. Fig. 11). When assigning lifetimes to
such references, our implementation had to be careful to remain consistent with Rust’s borrowing
rules: a reference to a struct must live at most as long as any of the references within the struct.

Reasons why REM might fail. As mentioned above, in some scenarios our approach can fail to
produce a result, in which case the refactoring reverts all its changes back to the original code. We
outline those scenarios below, and demonstrate that they are uncommon in our experiments.

(1) REM fails to refactor programs that require ownership permissions both within the extracted
code as well as after the call to the extracted function. Consider the following example:

// x is the owner of a String value

x = foo(x); // with the signature of foo being foo(s: String) -> String

println!("{}", x);

An attempt to extract x = foo(x) into a separate function generates the following constraints:
G <: ref (because x is used both within the extracted function and after its call by the println!

macro), and own <: G (as required by type signature of foo). According to the UNSAT relation
in Sec. 3.2.1, these constraints form a contradiction, and our algorithm aborts this refactoring.
We made this design choice since such scenarios do not represent Rust idioms that encourage
manipulation with references rather than the tedious operation of moving ownership “in and
out” of a function through parameters and return values, respectively. For the same reason, REM
does not perform refactorings that require significantly changing the structure of a program
to extend the scope of values created and owned by an extracted callee to outlive its call. A
characteristic example of this situation is shown in Fig. 12a. Extracting lines 2–3 into a function
would require us to introduce a new variable in the caller, passing a reference to it as an
argument to the callee, to serve as a recipient for a value allocated by String::new().

(2) REM does not perform extractions that require identifying ownership capabilities for separately
moved fields of structs that are not explicitly owned by a particular variable. An example of
such manipulation is shown in Fig. 12b, in which case an acceptable extraction of line 4 would
require to make a function of type String -> () taking s.a as an argument. This limitation
can be addressed by (8) making our ownership analysis (Sec. 3.2) type-aware so it would infer
ownership permissions for structure fields, not just variables, and by (88) enhancing our repair
procedure (lines 14–17 of Algorithm 2) to pass separately moved-out struct fields as arguments
(e.g., s.a instead of &s) to the call to an extracted function.

At the time of this writing, none of the scenarios (1)–(2) were supported by IntelliJ or VSCode.
Lastly, we have to note that, as the last stage of REM pipeline relies on a successful run of cargo

check (Sec. 3.3), it will fail if invoked on a project that did not compile to begin with—a situation
that is not too uncommon in a daily development workflow of a Rust programmer. A possible
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trade-off to support this scenario would be to forego the last stage of our approach entirely, settling
for code that might require additional fixing later—perhaps done in the same way as we described.

3.5 Implementation

We have implemented REM as an extension to IntelliJ IDEA’s plugin for Rust. REM is broadly
implemented as two parts: an editor-agnostic executable implementing the repair procedure de-
scribed in Sec. 3 written in around 10k LOC of Rust, and separately, a modified version of the
IntelliJ Rust plugin that invokes our executable (requiring an additional 1k LOC of Kotlin). Our
implementation relies on InteliiJ’s Rust plugin to perform the initial extraction and provides partial
type information for any arguments to the refactored code and the methods it calls, supplying this
information when invoking our executable with the broken Rust program. Our executable uses
Rust’s syn library to perform manipulations of the AST, and calls out to the Rust compiler to solve
lifetime constraints. We use SWI-Prolog to solve any other constraint systems required for repair.
We have found that since the sizes of the refactoring changes are generally small relative to the
codebase and are always localised to a single function, the combination of these two solvers are
sufficient to produce a fast and effective refactoring tool.

4 EVALUATION

In this section we present the results of our evaluation of REM, comparing its performance against
the state of the art Rust refactoring tools available at the time of writing and demonstrating our
tool’s efficacy for refactoring real-world Rust codebases.

4.1 Evaluation Design and Experiments

In order to demonstrate the utility of our tool, we conducted an empirical evaluation of REM’s
capabilities on a large corpus of real world Rust programs. In the evaluation, we placed an emphasis
on testing our refactoring tool in terms of both the end-to-end performance of the plugin as seen by
an end user and also the diversity of Rust features that could be successfully handled. We designed
our evaluation to answer the following research questions:

• (RQ1) Is REM practical? Can it extract code from real codebases to produce extracted functions of
reasonable quality, including those making use of non-trivial combinations of language features?
• (RQ2) Is REM efficient? Can it extract code in a reasonable amount of time?
• (RQ3) How does REM compare to existing refactoring tools, both in terms of performance of the
refactoring, and the classes of language features that it can support?

To answer these research questions, we first selected a corpus of five widely-used Rust projects
to serve as real-world codebases on which we could evaluate refactorings. The 5 projects were,
(1) petgraph,7 a graph library, (2) gitoxide,8 a Rust implementation of git, (3) kickoff,9 a GUI
program launcher, (4) sniffnet,10 a network packet sniffer and (5) beerus,11 a lightweight client for
the Starknet decentralised network. All projects are actively developed, having received commits
within a month at the time of writing, and meet a minimum degree of popularity, with all projects
having at least 100 stars on their respective pages on GitHub. Using these collected projects, we
then devised a series of 40 different experiments to evaluate the capabilities of our refactoring tool.

7https://github.com/petgraph/petgraph, 2.1k stars on GitHub.
8https://github.com/Byron/gitoxide, 6k stars on GitHub.
9https://github.com/j0ru/kickoff, 200 stars on GitHub.
10https://github.com/GyulyVGC/sniffnet, 3.5k stars on GitHub.
11https://github.com/keep-starknet-strange/beerus, 100 stars on GitHub.
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#
Project
(LOC)

Type
Size (LOC) Code Features Outcome cargo

check
Time
(sec)CLR CLE NLL NLR IB MB NEL SHL IJR VSC REM

1

petgraph
(20,157)

21 10 ✓ ! ✓ 0 0.37
2 20 11 ✓ ✗ ✓ 0 1.02
3 8 5 ✓ ✗ ✗ ✓ 1 1.47
4 54 26 ✓ ✓ ✓ ✗ ✓ 0 1.70
5 51 15 ✓ ✓ ✓ ✗ ✓ 0 0.85
6 21 8 ✓ ✓ ✓ ✓ 0 0.98

7 ⇆ 54 49 ✓ ✓ ✗ ✗ ! 1 0.55

8

gitoxide
(20,211)

8 5 ✗ ✓ ✓ 0 0.93
9 53 35 ✓ ✓ ✓ ✗ ✗ ✓ 1 1.24
10 16 10 ✓ ✗ ✓ 0 0.64
11 17 9 ✗ ✗ ✓ 0 0.81
12 50 13 ✓ ✓ ✗ ✗ ✓ 0 0.81
13 13 8 ✗ ✗ ✓ 0 0.86
14 30 15 ✓ ✓ ✗ ✗ ✓ 0 0.69
15 34 7 ✗ ✓ ✓ 0 0.68
16 , 47 21 ✓ ✗ ✓ ✓ 0 0.54
17 , 73 11 ✓ ✓ ✓ ✓ ✗ ✗ ✓ 1 1.20
18 ⇆ 30 27 ✓ ✓ ✓ ✗ ✓ 1 0.92
19 ⇆ 60 55 ✓ ✓ ✗ ✗ ✓ 3 2.32

20 ⇆ 116 6 ✓ ✓ ✗ ✗ ! 1 1.15
21 ⇆ 50 9 ✓ ✓ ✓ 0 0.69
22 ⇆ 47 6 ✓ ✓ ✓ 0 0.64
23 ⇆ 132 14 ✓ ✓ ✓ 0 0.70
24 ⇆ 38 3 ✓ ✓ ✓ ✓ 0 0.64
25 ⇆ 65 17 ✓ ✓ ✗ ✗ ✓ 0 0.72

26

kickoff
(1,502)

⇆ 56 16 ✓ ✓ ✓ ✓ ✓ ✓ 0 1.03
27 53 7 ✓ ✗ ✓ ✓ 0 1.01
28 51 17 ✓ ✓ ✓ 0 0.91
29 34 7 ✓ ✓ ✓ 0 0.98
30 21 13 ✓ ✓ ✓ ✗ ✓ ✓ 0 0.79

31

sniffnet
(7,304)

⇆ 71 21 ✓ ✓ ✓ ✓ 0 1.04

32 ⇆ 180 50 ✓ ✓ ✗ ✓ ! 1 0.76
33 50 14 ✓ ✓ ✓ ✓ ✓ ✓ 0 1.01
34 98 28 ✓ ✓ ✗ ✓ ✓ 0 0.98
35 27 13 ✓ ✓ ✓ 0 1.06
36 55 20 ✓ ✓ ✓ ✓ 0 1.00
37 45 15 ✓ ✓ ✓ 0 1.06
38 20 13 ✓ ✗ ✓ ✓ 0 1.08
39 71 17 ✓ ✓ ✓ 0 1.06

40 beerus (302) , 26 23 ✓ ! ✓ 0 1.07

Table 1. Statistics for the experiments on five projects with their size in lines of code. The types of each

experiment include reproducing refactoring from a commit by a human developer (,), inlining an existing

function and extracting it again (⇆), and arbitrary extraction of a code fragment ( ). The sizes of each

refactoring a�empt are in lines of code for the caller function (pre-extraction) (CLR), and extracted function,

i.e., the callee (CLE). Notable language features occurring in the refactored code fragments include: non-local

loop (NLL), non-local return (NLR), immutable borrow (IB), mutable borrow (MB), non-elidible lifetimes (NEL),

struct has lifetime slot (SHL). The types of refactoring outcomes for the unmodified IntelliJ IDEA Rust plugin

(IJR), VSCode Rust Analyzer (VSC), and REM include: producing well-typed code (✓), producing ill-typed

code (✗), and refusing to perform the refactoring (!). For REM, we count the cargo check cycles required to

infer correct lifetime annotations, and measure the total time (in seconds) taken to extract each refactoring.
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Our experiments were designed to be representative of real refactorings that might be conducted
by developers in practice. To this end, when possible, we selected real refactorings that could be
found in the version controls of each of the projects, although, as such transformations were rarely
committed alone, we also constructed a number of artificial transformations. Broadly speaking, our
experiments can be classified into three different classes by their origin: (1) a refactoring based on
a real commit in the project history, (2) a partially-synthetic inline-and-extract based refactoring
where we manually inline an existing function and then attempt to extract it, and (3) an artifical
extraction, where we select an arbitrary section of code from a method and extract it.
Additionally, in order to investigate the effect of different language features on the refactoring

process, for each experiment we also recorded the types of features that the refactored code made
use of, identifying 6 different classes of features that complicate the refactoring process: (1) non-local
loops (NLL) for refactorings requiring extracting code within a loop, (2) non-local returns (NLR)
for refactoring code using returns, code making use of (3) immutable borrows (IB) and (4) mutable
borrows (MB), (5) code that contains non-elidable lifetimes (NEL) and requiring explicit annotations,
and finally (6) code involving structs having lifetime parameters (SHL) (cf. Sec. 3.4).
The left side of Tab. 1 presents the full listing of all experiments and their properties.

4.2 Results

The right half of Tab. 1 presents the full results of our evaluation. We compare REM against IntelliJ’s
Rust plugin (IJR) (0.4.186.5143-223) and Visual Studio Code’s Rust Analyzer plugin (VSC) (v0.3.1451)
with latest versions as of February 2023. All experiments were performed on a commodity laptop
with an AMD Ryzen 7 4800HS CPU and 16GB of memory, running Fedora Linux 37.

4.2.1 RQ1: Practicality. For REM to be practical, it must be able to extract code from real-world
programs and produce usable refactored artefacts. As such, in our evaluation we considered an
extraction successful, if it produced code that compiles, i.e., it is well-typed, adheres to Rust’s
borrowing discipline using rustc as an oracle, and is comparable to a manually written refac-
toring by a developer if one exists. All refactorings were manually confirmed to be correct, i.e.,
semantics-preserving (including preservation of lifetimes), by inspection. The sixth column of Tab. 1
(Outcome/REM) lists the results for our tool, and shows that it was successful on most experiments.

Notably, Experiments #16, #17, and #40 correspond to real refactorings found in the version
controls of their respective projects, and for all such cases, REM was able to produce a result
comparable to the developer-written version. For example, consider Experiment #16, taken from
the gitoxide library, where a developer manually extracted a section of code from a function into a
separate helper (cf. Fig. 13a). Using REM to automatically perform this transformation produced
a similar refactoring (cf. Fig. 13b), modulo some superficial differences. One such difference is in
the encoding used for non-local control flow. While both refactorings introduce a new type to
restore the original control flow, REM introduces a simpler generic type to capture normal and
early returns, whereas the developer constructs a more bespoke type that hard-codes the logic of
the original program into its constructors. In this way, although marginally more verbose than the
developer-written one, by opting for a simpler transformation, REM produces more generic code.
Generally speaking, REM prioritises the generation of code that is usable in a larger number

of contexts at the cost of its conciseness. An extreme example of this trade-off can be found in
Experiment #19, where we first inlined and then extracted a function, decode, that happened to
take a number of arguments containing lifetime parameters as per the following signature:

pub fn decode<'a, E: T1<&'a [u8]> + T2<&'a [u8]>>(i: &'a [u8]) -> Result<&'a [u8], B<'a>, E>

When we extract this, REM’s algorithm initially produces a function with the following signature:
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pub fn hex_prefix_dev(data: &[u8; 4])

-> Result<LineOrWanted, Error> {

for ... in ...

{ if ... { return Ok(Line(...)); } }

... if ... {return Err(...)}

Ok(Wanted(...))

}

enum LineOrWanted {Line(...),Wanted(usize)}

fn streaming(...) -> Result<...,...> {

... match hex_prefix_dev(...){

Wanted(...) => ...,

Line(...) => return Ok(...)

} ... }

(a) Developer’s extraction

fn hex_prefix_REM(data: &[u8; 4])

-> RetHex<usize, Result<..., Error>> {

for ... in ...

{if ... {return RetHex::Return(Ok(...))}}

... if ... {return RetHex::Return(Err(...))}

RetHex::Ok(...)

}

enum RetHex<A, B> { Ok(A), Return(B) }

fn streaming(...) -> Result<...,...> {

... match hex_prefix_REM(...){

RetHex::Ok(...) => ...,

RetHex::Return(...) => return ...

} ... }

(b) REM’s extraction

Fig. 13. Developer-wri�en extractions with non-local control flow versus code produced by REM

fn decode_extracted<'lt0, 'lt1, 'lt2, 'lt3, 'lt4, E: T1<&'lt1 [u8]> + T2<&'lt2 [u8]>>

(i: &'lt0 [u8]) -> Result<(&'lt3 [u8], B<'lt4>), Err<E>>

where 'lt0: 'lt1, 'lt1: 'lt2, 'lt2: 'lt1, 'lt0: 'lt3, 'lt1: 'lt3, 'lt0: 'lt4, 'lt1: 'lt4

Observe that this signature, while correct, contains some circular lifetime constraints that are
redundant: 'lt1: 'lt2 and 'lt2: 'lt1 require that 'lt1 and 'lt2 are equal. As a post-processing
step, REM will simplify these bounds further by collapsing any such cycles into a single lifetime:

fn decode_extracted<'lt0, 'lt1, 'lt3, 'lt4, E: T1<&'lt1 [u8]> + T2<&'lt1 [u8]>>

(i: &'lt0 [u8]) -> Result<(&'lt3 [u8], B<'lt4>), Err<E>>

where 'lt0: 'lt1, 'lt0: 'lt3, 'lt1: 'lt3, 'lt0: 'lt4, 'lt1: 'lt4

It is worth noting that, while REM’s result is more complex than the original function even after
simplification, the resulting code places fewer constraints on its caller, and thus is more reusable.

Let us motivate the benefits of having such permissive lifetime constraints by examining a slightly
simpler example. Consider two functions, f_strict and f_perm, which both have the same body,
but different type signatures, with f_strict strictly enforcing a single lifetime for all its references,
and f_perm instead permissively using additional lifetime constraints to relate its parameters:

fn f_strict<'a>(x: &'a mut i32, y: &'a i32) -> &'a i32 { *x = *y; y }

fn f_perm<'a, 'b, 'c>(x: &'a mut i32, y: &'b i32) -> &'c i32 where 'b: 'a, 'b: 'c { *x = *y; y }

fn foobar() { // outer scope

let y = &0; let z;

{ // inner scope

let mut x = 1; z = f_perm(&mut x, y);

} // end inner scope

println!("{}", z) // end outer scope

}

Fig. 14. A discriminating caller

The function f_perm allows for a super-set of all callers
of f_strict by assigning all references distinct lifetimes
and then constraining these lifetimes such that 'b lives
at least as long as 'a and 'b lives at least as long as 'c.
As an example of how this can affect the caller, consider
the code in Fig. 14 where we have a variable x that lives
within an inner scope and is dropped when it ends while y
and z live in the outer scope and outlive x. Using f_perm,
the borrow checker simply requires that the value that y references will live at least as long as x
and z—which is respected. However, when we replace f_perm with f_strict the borrow checker
raises an error that x does not live as long as its borrow z. There is no particular reason why this
caller should not be allowed as z is always a reference to whatever y borrows. In this way, the
typing discipline adopted by REM produces code that is more reusable.

Finally, of the 40 experiments we considered, there were 3 refactorings that REM could not handle,
and refused to operate to avoid producing ill-typed extracted code. The reason for these failures
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were the same and related to handling more complex features of Rust, such as generics with trait
constraints, unrelated to borrowing that were not supported by IntelliJ’s Rust plugin. For example,
REM refused to perform a refactoring for Experiment #7 from the petgraph library, because IntelliJ
was unable to infer appropriate trait bounds for the generic parameter G in code making use of the
Dot data type: impl<'a, G> Dot<'a, G> where G: A + B + C + D. While we could apply the same
repairs we did for lifetime here (Sec. 3.3), without further constraint collection and reliable type
inference this is also non-trivial. Instead, in such cases, REM informs the user that it failed to
perform the extraction and offers to restore the code back to its original state—this was not the
case with IntelliJ’s Rust plugin or Rust Analyzer, which would both silently extract ill-typed code.

4.2.2 RQ2: Efficiency. The last column of Tab. 1 lists time taken by REM to perform a refactoring
for each experiment—as can be seen from the results, REM is quite efficient: it is able to complete
all refactorings in less than 2.5 seconds, with most refactorings being done within 1.5 seconds,
and an average repair time across all experiments being around 1 second. If these refactorings
were to be done manually, they would probably take much longer since user studies show that a
manual Extract Method refactoring takes 35 seconds on average for mainstream languages with
less complex type systems such as Java (Negara et al. 2013).

The efficiency of REM may seem surprising, especially considering that we invoke the compiler
during each repair iteration—the reason for this relates primarily to our choice to invoke cargo
check rather than cargo build. Though compiling a Rust project, as done by cargo build, is typically
an expensive operation, we have found that a large portion of this cost actually arises from the
process of simply emitting and linking the final binary. In contrast, if we only run the type-checking
and borrow-checking phases of the compiler, as is done by cargo check, then the execution times
of the compiler are short enough to be used in the loop as part of an IDE plugin. Furthermore,
since the changes of the extract function refactoring are always localised to a single file, Rust’s
incremental compilation techniques can further amortise the cost of compilation by caching results
for unchanged files, leading to shorter refactoring times, even for very large projects.
Another interesting observation from our table is that the size of the source code has minimal

effect on REM’s performance and that the main determinant of refactoring time for REM is primarily
the number of calls to cargo check (listed in the seventh column of Tab. 1). In particular, within our
experiments we consider projects of varying sizes, between 300 and 20,000 LOC of Rust, however,
our results find very little difference in the performance of REM across these projects, with no
clear trend between the size of the project and the time taken for the refactoring. Even looking at
the sizes of the functions being extracted from or into, there is no clear relation between source
or extracted code size and duration of the refactoring. In contrast, while almost all extractions
complete within 2 sec, the only one that takes longer, #19, also requires the largest number of
iterations of cargo check to complete. This extraction, which was discussed in Sec. 4.2.1, involves
several lifetimes and takes 3 cycles to repair, as REM must refine its lifetimes constraints several
times before it obtains a valid type signature for the extracted function. Each call to cargo check
invokes the compiler, re-analysing the modified file, and thereby incurs relatively higher cost.
Hence, the number of repair cycles produces the most impact on REM’s extraction time.

4.2.3 RQ3: Comparisons. The sixth column of Tab. 1 presents a comparison of REM against the
other main Rust refactoring tools available in the ecosystem: IntelliJ’s Rust plugin and Visual Studio
Code’s Rust Analyzer plugin. As can be seen from the table, our tool surpasses the state of the
art: REM is able to handle most experiments and only fails to handle 3 cases, while all other tools
fail on a significantly larger fraction of experiments (IntelliJ’s Rust plugin produces 19 ill-typed
refactorings out of 40, while Visual Studio Code’s Rust Analyzer plugin produces 16 ill-typed
refactorings and fails to handle 2 refactorings). We do not record the times taken for the other tools

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 245. Publication date: October 2023.



Adventure of a Lifetime: Extract Method Refactoring for Rust 245:23

in our evaluation as they all completed near instantaneously on all experiments (≤0.1B), however,
while our tool is slower than the original plugin by IntelliJ and Rust Analyzer, we argue that as REM
completes within a few seconds, i.e., is not unreasonably large, the marginal increase in refactoring
time is offset by the benefit of being able to automatically refactor a larger class of programs, and
thereby saving more time than annotating all the lifetimes and borrows manually.

The code produced by REM is idiomatic and mostly of comparable quality to the other state of the
art refactoring tools. We observed that the most significant differences in REM’s output primarily
related to its use of lifetime parameters, wherein REM prioritises assigning themost permissive signa-
ture to its extractions. Indeed, while REM can emit code with excessive parameterisation in extreme
cases (cf. Sec. 4.2.1), we found that most Rust programs in our experiments did not experience similar
blow-ups as their code only involved a few lifetimes at any single point. Furthermore, while other
tools would sometimes produce more concise code by eliding lifetimes, we found that the implemen-
tation of such elision is often ad-hoc and best-effort, sometimes even causing the refactoring itself
to fail. One example of this occurred in Experiment #4 from petgraph, where VSCode extracted a
function that elided all lifetimes: fn helper<EF>(&self, f: &mut T, edge_fmt: &EF, g: G). While
Rust’s lifetime elision rules would normally assign unique lifetimes to all arguments for such
references, the use of &self causes Rust to adopt a different heuristic and instead assign the same
lifetime to all references, thus causing the resulting code to fail to borrow-check. The IntelliJ Rust
plugin happens to have heuristics for this rule, and so manages to produce a well-typed program
for this particular case. In contrast, REM avoids the problem entirely due to its prioritisation of
permissive signatures. Overall, we find REM to be robust and applicable in a diversity of contexts.

For the few cases where REM is unable to perform a refactoring, generally both other refactoring
tools also struggle to execute correctly. As mentioned in the previous subsection, REM refused
to operate on certain programs in our experiments because they made use of language features
that were not well supported by IntelliJ Rust plugin, such as generic trait bounds—surprisingly,
while VSCode’s Rust Analyzer plugin uses an entirely different implementation, it also faces
difficulties refactoring these programs and often produces ill-typed code for them. The one apparent
counter-example to this trend is Experiment #32 where only VSCode is able to extract a well-typed
function, however, interestingly, this discrepancy arises for an orthogonal reason. This program in
Experiment #32 happens to be challenging because it makes use of Rust’s “struct punning” language
feature–using the variable name as a struct’s field name—and as this feature is usually overlooked
in Rust analysis tools, it results in extracted programs failing to type-check (most tools, including
IntelliJ that REM is built upon, produce A {*x} while A {x: *x} is required). In this case, VSCode
avoids the issue because its analysis detects that the parameter being punned is of a type that can be
copied (in Rust parlance, it implements the Copy trait), so it instead produces an extracted function
that takes full ownership of the parameter rather than a borrow. We observed that if we removed
the Copy trait on this parameter, then VSCode’s result becomes ill-typed for the same reason.

5 RELATED WORK

A Brief History of Automated Refactoring Tools. The notion of refactoring traces back to Opdyke’s
PhD thesis (1991) that investigated automated techniques for software maintenance in object-
oriented programming (OOP), and has been followed by a large body of research on this topic.
Refactoring in OOP is primarily challenging because of the class hierarchy, which complicates

tasks such as name resolution. Building on Opdyke’s work, Roberts (1999) developed a strategy to
optimise the performance of refactoring for Smalltalk programs. Kniesel and Koch (2004) decom-
posed refactorings into sub-components and introduced the idea of conditional transformations that
may not be behaviour-preserving, but produce correct program transformation when composed
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together. Juillerat and Hirsbrunner (2007) observed that tracking only simple properties is sufficient
to implement a correct extract method for many common patterns in Java code.

Another line of works investigated how these common refactorings could be applied in functional
languages. In his PhD thesis, Griswold (1992) considered refactorings for Scheme, and constructed
program dependence graphs as a lightweight analysis to ensure that refactorings preserve program
behaviour. Li et al. (2005) reported on their development of a refactoring engine for Haskell.
Subsequent works have considered refactorings for other modern functional languages such as
Scala (Sergey et al. 2010), Erlang (Li and Thompson 2012) and OCaml (Rowe et al. 2019).
While there are non-trivial challenges by the various language features considered by these

prior works, e.g., dynamic binding, implicit arguments, type classes etc, their approaches are not
amenable to handling the unique ownership and lifetime constraints imposed by Rust’s type system.

Refactoring Tools for Rust. Owing to the relative youth of the language, Rust’s tooling ecosystem
still remains in a nascent stage, however some initial work has been done on building automated
refactoring tools for it (Emre et al. 2021; Ringdal 2020; Sam et al. 2017).
Sam et al. (2017) were the first to investigate refactoring for Rust programs, where they con-

structed an automated algorithm to handle simple transformations such as renaming variables or
functions, inlining expressions or adding or removing lifetime parameters; refactorings such as
extract method were not investigated. More relevant to our work, in his masters thesis, Ringdal
(2020) reports on the development of a refactoring tool that partially supports extract method and
unbox field transformations. While Ringdal’s extract method can handle non-local control-flow, it
explicitly does not incorporate lifetime information in its analysis, and cannot handle cases where
lifetime annotations are required. Furthermore, Ringdal’s implementation only tackles a restricted
subset of Rust, disallowing generics in refactored code; it also suffers from a large variation in
runtimes, taking 7 seconds on average to perform a refactoring when operating on larger projects.
Moving beyond standard refactorings, recent works considered more bespoke program trans-

formations that are unique to Rust ecosystem. Most notably, the C2Rust (Immunant Inc. 2022)
program provides an automated tool that translates C to unsafe Rust, and has served as the basis of
a number of follow-up works. Emre et al. (2021) developed a tool that automatically translates code
written in the unsafe fragment of Rust to equivalent versions using only safe operations, using the
error messages emitted by the compiler to repair lifetime constraints much like our tool.

Constraint-Based Refactoring. Constraint solvingwas first brought to refactoring research through
works that investigated typing-related transformations, where the refactoring process could be
framed as solving a set of type constraints (Tip et al. 2003). Later, Tip (2007), observed that the
transformations considered in Opdyke’s work were also primarily related to types, and thereby
presented a constraint-based implementation of those operations. Subsequent works investigated
using typing-related transformations for substituting classes with alternative implementations (Bal-
aban et al. 2005), introducing type parameters for mutually recursive types (Kiezun et al. 2007),
replacing inheritance for delegation (Kegel and Steimann 2008) and moving methods and variables
between classes (Steimann and Thies 2009). These works were primarily concerned with handling
the nuances of the complex sub-typing relations introduced by object-oriented type systems, and
did not consider more complex typing disciplines such as the linear type system used in Rust.
Most recently, Steimann (2018) presented a generic framework for reasoning about constraint-

based refactoring, framing refactoring as a constraint-based repair much like we do. Steimann’s
approach requires encoding the entire refactoring operation as a constraint problem and “repairing”
the constraint set to determine a transformation, which would require re-implementing exist-
ing refactorings in this exotic format, whereas our repair procedure operates on almost correct
refactoring results and transparently serves to enhance an existing baseline refactoring tool.
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1 struct Point {

2 x: i32,

3 y: i32,

4 }

5

6

7 fn foo() {

8 let mut p = Point { x: 0, y: 0, };

9 p.x = p.x + 10;

10 p.y = p.y + 10;

11 println!("The new position is ({},{})",

12 p.x,p.y);

13 }

(a) Original code

1 fn foo() {

2 let mut p = Point { x: 0, y: 0, };

3 p.move_pt(10,10);

4 }

5

6 impl Point{

7 fn move_pt(self: &mut Point, x: i32, y: i32) {

8 self.x = self.x + x;

9 self.y = self.y + y;

10 println!("The new position is ({},{})",

11 self.x,self.y);

12 }

13 }

(b) Extracting as a method of the Point struct

Fig. 15. Towards more idiomatic refactoring with data structures

Ownership Types for Object Confinement. Rust’s ownership model draws inspiration from prior
work on object capabilities (Boyland et al. 2001) having a strong correspondence to ownership
types (Boyapati et al. 2002; Clarke and Drossopoulou 2002; Clarke et al. 2013, 1998; Sergey and
Clarke 2012). For example, mutable borrows in Rust are a similar concept to that of so-called
external uniqueness enforced via a form of onwership types (Clarke and Wrigstad 2003). Our work
exploits the similarities with prior type systems by building an analysis for ownership inference
(Sec. 3.2) that is reminiscent to the inference of ownership types (Huang et al. 2012b; Ma and
Foster 2007; Vakilian et al. 2009). In particular, inferring ownership types through a combination of
points-to analysis and constraint solving has been studied in the work of Huang et al. (2012a) that
required the programmer to provide partial annotations to guide the inference towards “best typing”.
Automated refactoring does not need any extra annotations beyond what’s already available in the
program; instead, our approach strips the parameters in the extracted method of the ownership
information and uses the solutions to the constraints collected from the extracted code fragment to
ascribe valid ownership annotations.

6 DISCUSSION

In this work, we observed that phrasing ownership and lifetimes as two independent aspects of
Rust type system allows for designing a refactoring that is compositional in its implementation
and that produces code of good quality. The compositionality of our approach manifests in the
ability of its components to be replaced or extended with alternative inference procedures without
affecting the rest of its pipeline. For example, one can further extend our ownership analysis
(Sec. 3.2) to support complex features, such as generics with traits constraints. While our current
implementation exercises a pragmatic approach to lifetime annotation inference by relying on
rustc (Sec. 3.3), a more principled methodology could use tools such as Polonius,12 thus making the
refactoring more robust by removing its dependency from the compiler’s error messages.

Another avenue for improvement is towards producing more idiomatic Rust code, possibly with
additional hints from a user. For instance, when extracting a code fragment that manipulates the
payload of one specific data structure, e.g., Point in lines 8–11 of Fig. 15a, a reasonable scenario
would be to hoist it into a separate implemenetation for that data type rather than a standalone
application-specific function, e.g., move_pt in Fig. 15b. Further enhancement would be to make use
of &mut self as a parameter when dealing with mutating a data structure via an extracted method

12https://github.com/rust-lang/polonius
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instead of passing its fields one by one. An additional challenge would be to redefine the structs to
use generic type parameters for its fields and corresponding function implementations.
By and large, the space of such improvements is too vast for us to predict all of them at this

stage. From our past industrial experience we envision these changes to be more likely introduced
in response to concrete feature requests coming from the users of the tool.

7 CONCLUSION

Designing an efficient and effective automated refactoring is a balancing act between “pessimistic”
and “optimistic” approaches. The former approach is more common in mainstream IDEs and works
well for languages with relatively “simple” type systems, such as that of Java. It achieves “best-effort”
soundness via static analyses run prior to the code modification. The latter approach is less explored
in practice and recasts refactoring as a repair procedure. We found it more viable for a language with
a “complex” type system (i.e., Rust), as it allows for a conceptually simpler refactoring formulation
and implementation by making extensive use of existing checkers as repair oracles.
We believe that the presented Extract Method design provides an informative case study in

combining these two approaches and paves the way to bringing more results from the decades-long
research in tooling support for software development to the rapidly growing Rust ecosystem.
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